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Abstract
The validity of optimized dynamical decoupling (DD) is extended to
analytically time-dependent Hamiltonians. As long as an expansion in
time is possible, the time dependence of the initial Hamiltonian does not
affect the efficiency of optimized dynamical decoupling (UDD, Uhrig DD).
This extension provides the analytic basis for (i) applying UDD to effective
Hamiltonians in time-dependent reference frames, for instance in the interaction
picture of fast modes and for (ii) its application in hierarchical DD schemes
with π pulses about two perpendicular axes in spin space to suppress general
decoherence, i.e. longitudinal relaxation and dephasing.

PACS numbers: 03.67.Pp, 82.56.Jn, 76.60.Lz, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Progress in quantum information processing (QIP) requires a complete and coherent control of
the dynamics of a quantum bit (spin S = 1/2) coupled to an environment (bath). In particular,
one must be able to realize the no-operation reliably and coherently for long-time storage of
quantum memory. Hence, decoherence must be suppressed. The most general decoherence
consists of both transversal dephasing and longitudinal relaxation, i.e. the decoherence rates
1/T �

2 and 1/T1, respectively, in nuclear magnetic resonance (NMR) language.
So far, only models without explicit time dependence have to our knowledge been

considered. The terms in the Hamiltonian H̃ without coherent control (we will call this
Hamiltonian henceforth the initial one) do not have any explicit dependence on the time.
For such a model, techniques of various degrees of sophistication exist to suppress the
dephasing and/or the relaxation [1, 2]. We concentrate here on the dynamical decoupling (DD)
[3–11] which generalizes the original ideas on spin echo techniques to open systems and their
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application to QIP [12–14]. Intuitively, the interaction between spin (qubit) and bath is
averaged to zero by means of repetitive π pulses. Each pulse rotates the spin by an angle π

about a spin axis â, thus inverting its components perpendicular to â.
A particularly efficient way to suppress pure dephasing is the optimized DD (Uhrig DD)

[7–10, 15–17] where the instants tj (j ∈ {1, 2, . . . , N}), at which N instantaneous π pulses1

are applied, are given by tj = T δj where T is the total time of the sequence and

δj = sin2(jπ/(2N + 2)). (1)

By efficient suppression it is meant that each pulse helps to suppress dephasing in one additional
order in an expansion in T, i.e. N pulses reduce dephasing to O(T N+1). The existence of an
expansion in powers of T, at least as an asymptotic expansion, is a necessary assumption.

So far, the derivation of the properties of UDD as defined in equation (1) was given for
time-independent initial Hamiltonians [7–10]. The present study extends this derivation to
initial Hamiltonians including an analytic time dependence. This extension is a breakthrough
because it establishes the applicability of optimized DD for effective Hamiltonians in special
reference frames, e.g. rotating frames, which induce an explicit time dependence. Such
situations also arise where fast modes are treated in the interaction picture, are averaged over
or integrated out so that time-dependent actions result and these actions are sufficiently smooth
in time. The condition on smoothness need not always be fulfilled.

Another important application of UDD for time-dependent Hamiltonians is the
suppression of general decoherence by the application of π pulses around two perpendicular
spin axes on two hierarchical levels. If UDD worked only for time-independent initial
Hamiltonians, the only known solution for the secondary level would be concatenation of
primary UDD sequences [11]. But recent numerical data by West et al showed that also the
suppression on the secondary level can be efficiently realized by UDD [18]. They called the
scheme quadratic DD (QDD). Hence, the derivation below provides the analytic foundation
for the applicability of QDD.

For the sake of simplicity, we first give the extended derivation for pure dephasing,
addressing longitudinal relaxation in a second step. Then the applications are discussed again
and we provide an explicit derivation of the time dependence of the effective Hamiltonian
after the primary application of UDD.

2. Dephasing

We consider the explicitly time-dependent Hamiltonian

H̃ (t) = Hb(t) + σzAz(t) (2)

where the time dependences of the bath Hamiltonian Hb(t) and of the coupling operator Az(t)

are required to be analytic, i.e. they can be expanded in t. If the system described by (2)
is subject to N instantaneous π pulses at the instants {T δj }, j ∈ {1, 2, . . . , N}, about a spin
axis perpendicular to the z-axis, the effective Hamiltonian H(t) in the basis of unflipped spins
reads

H(t) = Hb(t) + σzAz(t)F (t) (3)

where the switching function F(t) = ±1 appears which changes sign at the instants {T δj }.
We are interested in the time evolution operator U(t) induced by H(t):

1 In the present work, we stick to idealized, instantaneous pulses, but this requirement can be realized in [19].
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U(T ) := T exp

(
−i

∫ T

0
H(t) dt

)
(4a)

= U0(T )U1(T ) (4b)

where T is the time-ordering operator. The second line is based on the interaction picture with
respect to Hb(t),

U0(t) := T exp

(
−i

∫ T

0
Hb(t) dt

)
(5a)

U1(t) := T exp

(
−i

∫ T

0
AI(t)F (t) dt

)
(5b)

AI(t) := U
†
0(t)σzAz(t)U0(t). (5c)

The key observation is that AI(t) is analytic as well because Hb(t) is analytic according
to our requirement, and thus U0(t) and Az(t) again according to our requirement2. Thus, we
have

AI(t) =
∞∑

p=0

Aptp. (6)

To be precise, to exclude any terms up to a given order N, we only need that AI(t) can be
represented by the sum in (6) up to p = N plus a residual function of higher order, i.e. the
convergence of the Taylor series is not needed. In general, the operators Ap are complicated
integral expressions of the operators in (2).

Next, the time evolution U1(T ) is expanded according to the standard time-dependent
perturbation theory

U1(t) =
∞∑

n=0

(−i)nun (7a)

un =
∫ T

0
F(tn) · · ·

∫ t3

0
F(t2)

∫ t2

0
F(t1)AI(tn)AI(tn−1) · · · AI(t1) dt1 dt2 . . . dtn. (7b)

Our aim is to show that the powers with n odd are of order T N+1 because only the odd
powers in σz affect the qubit spin. Hence, we can follow the reasoning of Yang and Liu [10]
from here on. In order to keep the present communication self-contained, we include the main
steps. First, we expand in powers of T by inserting (6) into (7b):

un =
∑
{pj }

T n+PnApn
. . . Ap2Ap1Fp1,p2,...pn

(8)

where pj ∈ N and Pn := ∑n
j=1 pj and

Fp1...pn
:=

∫ 1

0
dt̃n . . .

∫ t̃3

0
dt̃2

∫ t̃2

0
dt̃1

n∏
j=1

F(T t̃)t̃
pj

j . (9)

2 We assume that all operators appearing in the derivation are bounded. Alternatively, we require at least that all
products of the operators of the system have finite matrix elements. This implies that no divergences at low or high
energies are present [9, 21, 22].
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We used the dimensionless relative times t̃ := t/T . Since the N switching instants are given
by T δj , the function F(T t̃) does not depend on T for given {δj }. Hence, the coefficients
Fp1...pn

do not depend on T.
Our goal is to show that Fp1...pn

vanishes for n odd and N � n + Pn. Based on the UDD
choice for the {δj } in (1), the substitution t̃ = sin2(θ/2) suggests itself because it renders
f (θ) := F(T sin2(θ/2)) particularly simple if the {δj } are chosen according to (1). Then
f (θ) = (−1)j holds for θ ∈ (jπ/(N + 1), (j + 1)π/(N + 1) with j ∈ {0, . . . , N}. If we
release this contraint on j allowing j ∈ Z, the function f (θ) becomes an odd function with
antiperiod π/(N + 1). Thus, its Fourier series

f (θ) =
∞∑

k=0

c2k+1 sin((2k + 1)(N + 1)θ) (10)

contains only harmonics sin(rθ) with r an odd multiple of N + 1. The precise coefficients
c2k+1 do not matter which can be exploited for other purposes, e.g. to deal with pulses of finite
duration [19].

Under the substitution t̃ = sin2(θ/2), the terms t̃ p dt in (9) become sin2p(θ/2) sin(θ) dθ

which can be reexpressed as suitably weighted sum over terms sin(qθ) dθ with q ∈ Z, |q| �
p + 1. Thus, we can achieve our goal if we show that the coefficients

fq1...qn
:=

∫ π

0
dθn . . .

∫ θ3

0
dθ2

∫ θ2

0
dθ1

n∏
j=1

f (θj ) sin(qj θj ) (11)

vanish for n odd and |qj | � pj + 1. These coefficients are split up further by inserting the
Fourier series (10) for f (θ) consisting of terms sin(rθ) (r odd multiple of N + 1). Twice the
product of two sine functions is the difference of two cosines whose arguments are the sum
and differences of the sine arguments. Thus, we want to show

0 =
∫ π

0
dθn . . .

∫ θ3

0
dθ2

∫ θ2

0
dθ1

n∏
j=1

cos((rj + qj )θj ) (12)

where rj is an odd multiple of N + 1 and

n∑
j=0

|qj | �
n∑

j=0

(pj + 1) = n + Pn � N. (13)

It is easy to perform the first two integrations in (12),

cos((r3 + q3)θj )

∫ θ3

0
dθ2

∫ θ2

0
dθ1

2∏
j=1

cos((rj + qj )θj ), (14)

analytically yielding a lengthy sum over terms of the form cos((r ′
3 + q ′

3)θ3) where r ′
3 is still an

odd multiple of N + 1 and |q ′
3| � |q1| + |q2| + |q3|. Hence, the structure of the expression on

the rhs of (12) is preserved, but n is lowered by two. This procedure is iterated till n = 1, and
we arrive at

0 =
∫ π

0
dθ cos((R + Q)θ) (15)

because R is an odd multiple of N + 1 and |Q| � N ; thus, |R + Q| ∈ N. This concludes the
derivation.
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πxπx

zπ zπ zπ zπ zπ zπ zπ zπ zπ

Tp
time

time
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primary level

T

T0

0
QDD

Figure 1. Examples of nested DD suppressing general decoherence. Here the primary π pulses
rotate about the z axis and the secondary ones about x. But any pair of perpendicular axes will do
(see footnote 3). In practice, the primary level should compensate for the faster decoherence. The
duration of the primary sequences is Tp, the total duration T.

3. Longitudinal relaxation

The above derivation holds also for the odd powers of longitudinal relaxation as observed for
constant Hamiltonians before [10]. The Hamiltonian studied is H̃ (t) = D0(t) + D1(t) where

D0(t) := Hb(t) + σzAz(t) (16a)

D1(t) = �σ⊥ · �A⊥(t) = σxAx(t) + σyAy(t). (16b)

The π pulses are applied around the spin z axis so that the switching function appears for
D1, i.e. H(t) = D0(t) + D1(t)F (t). Then all the above steps for dephasing can be repeated
identically on substituting Hb → D0 and σzAz → D1. Thus, we know that the UDD sequence
of N pulses makes all odd powers up to N in D1 vanish. Thus, it efficiently suppresses
longitudinal relaxation also for time-dependent Hamiltonians.

4. Applications

The first application, of course, is the use of the UDD for Hamiltonians in certain reference
frames which imply that the Hamiltonians are effective ones with some time dependence.
Examples are a rotating frame, in which a magnetic field is not fully compensated, and
an effective Hamiltonian in which fast modes have been averaged by the help of Magnus
expansions or they are treated in an interaction picture. In the cases where the resulting time
dependence can be considered to be sufficiently smooth (which need not be always true), the
previous results establish the applicability of the optimized sequence UDD, in spite of the time
dependence of the Hamiltonian.

The second application concerns dynamic decoupling for general decoherence. The
nesting of pulse sequences about perpendicular spin axes makes it possible to eliminate
all possible couplings between a qubit and its environment provided the expansion in time is
possible, see figure 1. A first proposal used iterative concatenation (CDD) without optimization
leading to a fast growing number of pulses proportional to 4� if terms up to T � were eliminated
[6]. If one uses concatenation on the secondary level, but optimized UDD on the primary level
(i.e. CUDD), the number of pulses grows only like 2� improving by a square root [11]. On the
primary level, CUDD suppresses longitudinal relaxation by Nz π pulses about the z axis such
that the time evolution due to a Hamiltonian H̃ = D0 + D1 (for Di see (3)) without explicit
time dependence is reduced to the time evolution due to an effective Hamiltonian

H̃ eff(t) = Deff
0 (t) (17)
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up to correction of the order O
(
T

Nz+1
p

)
. For a discussion of the smoothness of H̃ eff(t), we

refer the reader to the appendix. The time dependence of H̃ eff(t) was seen previously as the
decisive obstacle to apply an optimized UDD sequence again on the secondary level [11].
Below we show explicitly that H eff(t) is indeed time dependent.

Very recent numerical data [18], however, indicate that the use of a UDD sequence also
on the secondary level with pulses about z⊥ is in fact a very efficient way to suppress general
decoherence. This nesting of two perpendicular UDD sequences of Nz π pulses about z for
each of the N⊥ + 1 intervals of a UDD sequence of N⊥ π pulses about a perpendicular axis is
called quadratic dynamic decoupling (QDD) [18] highlighting the case Nz = N⊥. This choice
is advantageous if longitudinal relaxation and dephasing are of similar magnitude.

The above derivation of the UDD as optimized sequence for dephasing and longitudinal
relaxation for time-dependent Hamiltonians provides the analytic foundation of the QDD
proposed by West et al [18]. In spite of the time dependence that the effective Hamiltonian
H̃ eff(t) acquires under the primary UDD (suppressing longitudinal relaxation up to T Nz+1), the
secondary UDD (suppressing dephasing up to T N⊥+1) will still work to the desired order given
by the number of pulses3. The reason is that an analytic time dependence, quite surprisingly,
does not spoil the analytic properties of the optimized UDD sequences.

5. Time dependence after the primary DD

Applying π pulses about the spin axis z to H̃ = D0 + D1 without explicit time dependence
converts H̃ to H(t) = D0 + D1F(t), where F(t) = ±1 is a switching sign at the instants of
the pulses (see footnote 1), see figure 1. To find the time dependence of the time evolution
U(Tp) due to H(t), the Magnus expansion U(Tp) = exp

{−iTp(H
(1) + H(2) + H(3)) + O

(
T 4

p

)}
is used [1, 20]. The terms are powers in Tp; they read TpH

(1) = ∫ Tp

0 H(t) dt, TpH
(2) =

i/2
∫ Tp

0

∫ t1
0 [H(t1),H(t2)] dt1 dt2 and

TpH
(3) = −1

6

∫ Tp

0

∫ t1

0

∫ t2

0
{[H(t1), [H(t2),H(t3)]]

+ [H(t3), [H(t2),H(t1)]]} dt1 dt2 dt3. (18)

The first-order term H(1) contains the integral I1 := ∫ Tp

0 F(t) dt which vanishes for any
reasonable DD sequence with at least one pulse; thus, one has H(1) = D0 without time
dependence.

The second-order term H(2) involves the commutator [H(t1),H(t2)]. We find

TpH
(2) = 1

2
η̂(2)

∫ Tp

0

∫ t1

0
(F (t2) − F(t1)) dt1 dt2, (19)

where the operator η̂(2) induces dephasing,

η̂(2) :=
∑

i,j=x,y

σi([Hb, Ai] − iεzij {Az,Aj }), (20)

with εijz being the Levi-Civita operator and {, } the anti-commutator. Since the rhs of (19) is
linear in F(t), we know from the general derivations given above or in [10] that the double
integral vanishes if a UDD sequence with two or more pulses is applied since the total order
of the term is T 2

p .4

3 One can equally suppress dephasing on the primary level and relaxation on the secondary level.
4 For symmetric pulse sequences, e.g. UDD sequences with an even number of pulses, a general theorem on the
Magnus expansion precludes a finite second order term anyway [1]; note our non-standard counting of the orders.
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The third order finally yields a non-vanishing time dependence. There is a linear and a
quadratic term in F(t):

TpH
(3) = −1

6
{I3,1[D0, η̂

(2)] + I3,2[D1, η̂
(2)]} (21a)

I3,1 :=
∫ Tp

0

∫ t1

0

∫ t2

0
(F (t3) + F(t1) − 2F(t2)) dt1 dt2 dt3 (21b)

I3,2 :=
∫ Tp

0

∫ t1

0

∫ t2

0
(2F(t1)F (t3) − F(t2)F (t1) + F(t2)F (t3))) dt1 dt2 dt3. (21c)

We do not give the first commutator in (21a) explicitly because I3,1 is linear in F(t).
Hence, it is zero for any UDD with three or more pulses. But I3,2 is quadratic in F(t) so
that the UDD sequence does not make any statement on its value. Hence, it will generally be
finite. Indeed, we verify numerically for Nz pulses the examples I

Nz=3
3,2 = −0.030 33T 3

p and

I
Nz=7
3,2 = −0.006 68T 3

p for Nz odd, and I
Nz=6
3,2 = −0.008 84T 3

p and I
Nz=8
3,2 = −0.005 24T 3

p for
Nz even. This implies a finite quadratic dependence of the effective Hamiltonian H eff which
we aimed to establish.

For completeness, we compute the corresponding operator [D1, η̂
(2)] which introduces

corrections to dephasing and to the bath dynamics as expected:

[D1, η̂
(2)] =

∑
i,j=x,y

([Ai, [Hb, Ai] − iεijz{Az,Aj }] + iσz{Ai, ε
ijz[Hb, Aj ] + i{Az,Ai}}). (22)

Obviously, these terms do not vanish except for very special choices of bath Hb and the
coupling operator �A. This completes the derivation that the effective Hamiltonians are indeed
time dependent. Thus, the analytic argument in [18] for the validity of the QDD does not hold.

6. Summary

We extended the derivation of the optimized properties of Uhrig dynamic decoupling to
initial Hamiltonians with time dependence. First, this establishes the applicability of
optimized dynamic decoupling also for the large class of effective Hamiltonians which inherit
an explicit time dependence from special reference frames or from the treatment of fast
modes in the interaction picture, by average Hamiltonian theory, or by integrating them out.
Second, our finding provides the analytic reason for the advantageous properties of quadratic
dynamic decoupling for the suppression of general decoherence including both dephasing and
longitudinal relaxation. This scheme was recently proposed by West et al [18]. Thus, the road
is paved for a much broader applicability of optimized dynamic decoupling.

Acknowledgment
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Appendix. Effective Hamiltonian from the primary level of QDD

Here we discuss in more detail how H̃ eff(t) arises from the time evolution on the primary level
in QDD. In particular, we discuss why this operator is smooth or even analytic in t although it
arises from the integration of H(t) = D0 + D1F(t) where F(t) is a switching function which
changes sign at the pulses of the primary level.
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Figure A1. Ranges of integration (range of solid curve) and behavior of the switching function
F(t) for the calculation of U(t) (upper panel) and of the effective U eff(t) (lower panel).

Let us denote by U(t) the time evolution operator on the primary level, i.e. within one of
the intervals of the secondary level, see figure 1. It reads

U(t) = T exp

(
−i

∫ t

0
H(t ′) dt ′

)
(A.1)

and the domain of integration is illustrated in the upper panel of figure A1 by the range of the
switching function F(t) encountered. If we define the dimensionless relative time t̃ := t/Tp

and the corresponding Hamiltonian H rel(t̃) := H(Tp t̃ ), the previous equation becomes

U(t) = T̃ exp

(
−iTp

∫ t/Tp

0
H rel(t̃) dt̃

)
(A.2)

where T̃ stands for the time ordering according to the relative time t̃ . Equation (A.2) is given
here for comparison with the subsequent effective time evolution operator.

To consider what happens on the secondary level, we need U eff(t). Its defining property
is U eff(Tp) := U(Tp). But if its argument is varied Tp → t , it is implied that the primary
sequence is scaled accordingly. That is its decisive difference to U(t), which is illustrated in
the lower panel of figure A1. Note that this scaling is exactly what is done when the primary
sequences are applied in each of the time intervals of varying duration of the secondary level,
see figure 1.

U eff(t) is given by

U eff(t) = T̃ exp

(
−it

∫ 1

0
H rel(t̃) dt̃

)
. (A.3)

From this equation it is obvious that U eff(t) is generically smooth in the variable t. If the parts
of the Hamiltonian are bounded, U eff(t) is analytic because the exponential is analytic.

The final step is to define the corresponding effective Hamiltonian H̃ eff(t). As usual, the
Hamiltonian is retrieved from the time evolution as its infinitesimal generator

H̃ eff(t) := i[∂tU
eff(t)][U eff(t)]†. (A.4)

If U eff(t) is analytic, then H̃ eff(t) is analytic as well. If U eff(t) can be expanded up to and
including the power tN+1, then H̃ eff(t) can be expanded up to and including the power tN.

8
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